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Experiments have established that an axisymmetric sharp trailing edge of a gas
bubble in a viscoelastic fluid can develop into a three-dimensional ‘knifelike’ shape
under certain conditions (high capillary number, large bubble size). A numerical
study is conducted to discover the physics of this phenomenon. The axisymmetric
deformation of a bubble rising buoyantly in a viscoelastic fluid is simulated by
solving the axisymmetric flow equations coupled with the constitutive equations of
the finitely extensible nonlinear elastic Chilcott–Rallison (FENE-CR) model. The
three-dimensional temporal linear stability analysis of this axisymmetric base state is
carried out. The dominant eigenvalue which is indicative of the growth rate of the
perturbations is computed. The only unstable eigenmode has azimuthal wavenumber
m equal to 2. The corresponding eigenfunction shows that indeed a sharp axisymmetric
tail develops a knife-edge form. A further investigation of the energy budget of the
disturbances for m =2 is performed to determine the production and dissipation terms
affecting the growth of this instability. It is shown that the normal gradient of the
base-state pressure along the free surface plays an important role in the evolution of
the instability.

1. Introduction
It has been observed in experimental studies (Hassager 1979; Liu, Liao & Joseph

1995) that an asymmetric cusplike tip would abruptly appear at the trailing edge of
a buoyantly-rising gas bubble in a viscoelastic fluid under certain conditions. In this
study, the term cusp is used to indicate an apparent singularity of the outer solution in
the sense of singular perturbation. The finite surface tension will of course ameliorate
this singularity in the inner solution, thus disallowing a true cusp. Although all
geometric and physical conditions prompt an axisymmetric shape to appear, under
certain conditions, a three-dimensional cusp can form at the rear tip of a bubble.
Close observation of the cusped tip reveals a broad edge in one direction and a
sharp edge in the perpendicular direction. This knifelike tip is dramatically different
from the symmetric bubble observed in a Newtonian fluid under normally identical
conditions. Based on experiments, Liu et al. (1995) suggested that the formation of
such knife-like cusp is related to the capillary number Ca. Their results indicated
the cusped bubble tail abruptly forms with Ca near unity. They also observed that
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the bubble volume increase above a critical value leads to the formation of a cusped
tail and discontinuity of the rising velocity. Belmonte (2000) experimentally observed
that, above some critical volume, a buoyancy-driven bubble in a wormlike micellar
solution experiences shape oscillations in time between an axisymmetrically cusped
tip and a snap-back round tip which are accompanied by an abrupt discontinuity in
bubble-rising velocity with respect to bubble volume.

The fast-growing computational power makes linear stability analysis an affordable
technique to tackle hydrodynamic stability problems of complicated base flows.
Zebib (1987) presented a technique to effectively remove spurious eigenvalues in
solving linear stability problems by spectral method. Kim & Pearlstein (1990)
conducted a stability study of the flow past a sphere. They used spectral method
to compute the steady axisymmetric flow as the base state and then perturbed it with
small disturbances of axisymmetric and non-axisymmetric modes. Their calculations
showed that the base flow is stable for axisymmetric perturbations for Re � 190
but undergoes a Hopf bifurcation at Re =175.1 for perturbations with azimuthal
wavenumber equal to unity. Kuhlmann & Rath (1993) investigated the stability of
steady axisymmetric thermocapillary flow in a cylindrical liquid bridge. The base
state and three-dimensional perturbations were solved by the spectral method. Their
linear stability results identified the mode for azimuthal wavenumber equal to one
as the critical mode. The disturbance for the unstable mode is either steady or
oscillatory, depending on the Prandtl number. Ramanan & Homsy (1994) made a
numerical investigation of the stability of classical lid-driven cavity flow. The critical
Reynolds number and the critical wavelength of the neutral mode were identified
in their calculations. The mechanism of instability was analysed through energy
budget calculations and indicated a Goertler-type instability. The linear stability of
the steady thermocapillary flow inside a cylindrical liquid bridge was studied by
Levenstam, Amberg & Winkler (2001). The base state was computed using finite
element method. The linear stability analysis revealed that the axisymmetric base
state is more stable at intermediate than high or low Prandtl numbers due to the
stabilizing effect of thermocapillary forces.

In the present study, the numerical analysis of the cusped shape is conducted
by combining computational fluid dynamics (CFD) and linear stability analysis.
An axisymmetrically cusped basic state is first established using CFD. Then a linear
stability analysis is carried out to predict the onset of an asymmetric cusp above critical
conditions. Finally, the mechanism of cusp formation is explored by performing energy
budget analysis. In § 2, the physical problem is described, and the relevant parameters
are defined. In §§ 3 and 4, the formulations of governing equations and boundary
conditions for base flow and perturbations are presented, respectively. The CFD
results of base-state flow is discussed in § 5. The linear stability analysis results and
the exploration of the instability mechanism are presented in §§ 6 and 7 summarizes
the main results of this paper.

2. Problem Description
2.1. Physical problem

The physical problem is modelled as a gas bubble rising buoyantly along the centreline
of an open-ended vertical tube filled with an initially quiescent finitely extensible
nonlinear elastic Chilcott–Rallison (FENE-CR; Chilcott & Rallison 1988) model
fluid, as shown in figure 1. The diameter of the tube Dt is set 10 times larger than
the diameter of a spherical bubble D. We assume that the gas bubble has sufficiently
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Figure 1. Sketch of a bubble suspended in a vertical tube filled with a viscoelastic fluid.

small density and viscosity compared with those of the exterior phase fluid so that the
stress field inside the bubble is neglected. It is assumed that the surface tension γ is
uniform. Also, thermal effects are not considered in this study. The initially spherical
bubble rising up and deforming during transient states is simulated in a reference
frame attached to the bubble centre. Under certain conditions, the bubble can develop
a three-dimensional trailing edge. We perform linear stability analysis to show this
unusual feature.

2.2. Non-dimensionalization

The characteristic quantities used for non-dimensionalization are the initially spherical
bubble diameter D, exterior phase density ρ, exterior fluid solvent viscosity μs ,
polymeric viscosity μp , bubble surface tension γ and polymer relaxation time λ. The
expressions

U ∗ =
ρgD2

μs

, T ∗ =
D

U ∗ , P ∗ = ρU ∗2
, σ p∗ =

μpU ∗

D

denote the characteristic velocity, time, pressure and polymer stress, respectively. The
dimensionless parameters are defined as

Re =
ρU ∗D

μs

, c =
μp

μs

, Ca =
μsU

∗

γ
, De =

λU ∗

D

for Reynolds number, the ratio of the polymer contribution to the viscosity to the
solvent viscosity, capillary number and Deborah number, respectively.

In the result §§ 5 and 6, the definitions of Reynolds, capillary and Deborah numbers
are based on the bubble terminal velocity U ∗

T and total viscosity of the exterior phase
μs +μp instead of U ∗ and μs . As such, they are identified by the subscript T : ReT , CaT

and DeT . In our computations, the unsubscripted parameters are set to given values.
The values of the subscripted parameters are not known a priori and are obtained
as a part of the solution. When comparing with experimental results, the latter set is
more relevant. Depending on the actual Reynolds number, U ∗/U ∗

T ∼ O(1–100).
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3. Base-state formulation
3.1. Governing equations

The dimensionless flow equations of the exterior bulk phase are

∇ · u = 0, (3.1)

∂u

∂t
+ ∇ · (uu) = −∇P +

1

Re
∇2u +

c

Re
∇ · σp. (3.2)

In the momentum equation, the hydrostatic pressure is absorbed in the modified
pressure P. The viscoelastic effect is represented by the polymer stress tensor σp ,
which is calculated from the constitutive equations of the FENE-CR model (Chilcott
& Rallison 1988):

σp =
f (R)(A + I)

De
, (3.3)

�
A +

f (R)

De
A = ∇u + (∇u)T , (3.4)

�
A≡ ∂ A

∂t
+ u · ∇A − A · ∇u − (∇u)T · A, (3.5)

in which A represents an ensemble average of the dyadic product RR of the ‘FENE
dumbbell’ end-to-end vector R. The effect of fluid finite extensibility is enforced by
the nonlinear function f (R) which takes the following form:

f (R) =
1

1 − tr(A + I)/L2
.

Here, the specified parameter L denotes the ratio of the length of a fully
extended dumbbell to its equilibrium length. The complete formulation of the
above-given governing equations in cylindrical coordinates is described in the
Appendix.

3.2. Boundary conditions

The boundary conditions on the free surface consist of dynamic and kinematic
conditions. By assuming flow axisymmetry, the dimensionless dynamic conditions in
locally orthogonal coordinates are given as

P +
Zs

Re
− 2

Re

∂un

∂n
+

K

ReCa
− c

Re
σp

nn = 0 (3.6)

for normal stress balance and

∂un

∂s
+

∂us

∂n
+ cσp

ns = 0 (3.7)

for tangential stress balance. Here, n and s denote the local coordinates normal and
tangential to the bubble surface; n is defined positive when pointing to the exterior
fluid; Zs denotes the axial position of a bubble surface point relative to the bubble
centre. The curvature K in the axisymmetric case is

K =
∂nz

∂z
+

∂nr

∂r
+

nr

r
. (3.8)
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The dimensionless kinematic condition states that there is no flow across the free
surface, i.e.

∂Hn

∂t
+ us

∂Hn

∂s
= un. (3.9)

Along the far-field outer boundary, u = − UT êz is imposed, where UT denotes
instantaneous bubble migration velocity. The no-slip and no-penetration conditions
are imposed along the sidewall. Symmetry condition is imposed along the axis of
symmetry. For the polymer stretch tensor A, as (3.4) is hyperbolic in time, A = 0 is
required on the upstream boundary.

3.3. Outline of the computational method

The finite volume method is used to discretize the above system of equations
and boundary conditions in boundary-fitted coordinates. The introduction of an
artificial compressibility factor (Chorin 1967) in the continuity equation effectively
increases the convergence rate of the computations by directly coupling the pressure
and velocity fields. The flux-difference splitting scheme (Roe 1981) is adopted to
effectively overcome numerical instability associated with the change of type in
the governing equations, especially for highly elastic fluids. The application of this
combination of techniques to viscoelastic flow problems is novel. The methods
have their root in high-speed aerodynamics in which change of type between
elliptic (subsonic) and hyperbolic (supersonic) is common and needs to be handled
automatically. This very same capability was needed (and missing) in handling
viscoelastic flow simulations. The implementation of free-surface boundary conditions
on the boundary-fitted grid enables the solver to simulate immiscible two-phase flows
with high fidelity for resolving the moving interface. A complete description of the
numerical implementation of the governing equations and boundary conditions is
presented by You, Borhan & Haj-Hariri (2008).

4. Perturbed-state formulation
4.1. Governing equations

Once the axisymmetric steady-state basic flow is obtained, we perform a linear
stability analysis of three-dimensional small disturbances introduced to the base-state
solution. The system of three-dimensional equations involves 11 variables that include
the pressure (P ), 3 velocity components in the axial, radial and azimuthal directions
(uz, ur, uφ), 6 components of the polymer stretch tensor (Azz, Arr , Azr , Aφφ, Azφ, Arφ)
and the small displacement normal to the bubble surface (Hn). Each variable q

can be decomposed into a basic state term (denoted by q̄) and a three-dimensional
perturbation (denoted by q ′) as shown below:

q(z, r, φ, t) = q̄(z, r) + q ′(z, r, φ, t). (4.1)

The basic state is obtained from the CFD solution. For a steady base flow solution,
the base-state variables are collectively denoted by a vector Q̄ as

Q̄(z, r) =

⎡
⎢⎢⎢⎣

P̄

ū

Ā

H̄ n

⎤
⎥⎥⎥⎦ (z, r), (4.2)

ū = [ūz, ūr , 0]T , (4.3)
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Ā = [Āzz, Ārr , Āzr , Āφφ, 0, 0]T , (4.4)

H̄ n = 0. (4.5)

The corresponding three-dimensional perturbation terms are assumed, without loss
of generality, to be of the form

Q′(z, r, φ, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P ′

u′
z

u′
r

u′
φ

A′
zz

A′
rr

A′
zr

A′
φφ

A′
zφ

A′
rφ

H ′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(z, r, φ, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃ (z, r) cos(mφ)
ũz(z, r) cos(mφ)
ũr (z, r) cos(mφ)
ũφ(z, r) sin(mφ)
Ãzz(z, r) cos(mφ)
Ãrr (z, r) cos(mφ)
Ãzr (z, r) cos(mφ)
Ãφφ(z, r) cos(mφ)
Ãzφ(z, r) sin(mφ)
Ãrφ(z, r) sin(mφ)
H̃ n(z, r) cos(mφ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eωt, (4.6)

where the real number m is the azimuthal wavenumber and ω is the complex growth
rate which is to be determined in an eigenvalue problem. The real part of ω represents
the growth rate of disturbances, and the imaginary part represents the frequency of
disturbances oscillating in time.

By substituting decompositions of the form (4.1) into flow equations (3.1), (3.2) and
the FENE-CR model equations (3.3)–(3.5), linearizing them and subtracting the basic
state solutions, the equations governing small disturbances read

∇ · u′ = 0, (4.7)

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū = −∇P′ +

1

Re
∇2u′ +

c

Re
∇ · σp ′

, (4.8)

�
A′ +

f (R̄)

De
A′ +

f (R)′

De
Ā = ∇u′ + (∇u′)T , (4.9)

�
A′=

∂ A′

∂t
+ u′ · ∇ Ā + ū · ∇A′ − A′ · ∇ū − Ā · ∇u′ − (∇u′)T · Ā − (∇ū)T · A′, (4.10)

σp ′ =
f (R̄)A′

De
+

f (R)′( Ā + I )

De
. (4.11)

In (4.9) and (4.11), f (R)′ = (f (R̄)
2
/L2)tr(A′). The complete formulation of the

perturbed governing equations in cylindrical coordinates is presented in the Appendix.
By inserting the form (4.6) for Q′, the governing equations for the perturbations

(4.7)–(4.11) can be cast into a matrix equation:

Ad X̃d = −ωBd X̃d, (4.12)

where

X̃d =

⎡
⎢⎣

P̃

ũ

Ã

⎤
⎥⎦ (z, r), (4.13)

ũ = [ũz, ũr , ũφ]
T , (4.14)
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Ã = [Ãzz, Ãrr , Ãzr , Ãφφ, Ãzφ, Ãzφ]
T . (4.15)

In the above, X̃d is the eigenfunction and ω is the eigenvalue of the system. The
matrices in (4.12) are given below. In particular, Ad is an operator:

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂

∂z

∂

∂r
+

1

r

m

r
0 0 0 0 0 0

∂

∂z
M1

∂ūz

∂r
0 M19 + M25 M25 M20 M25 M21 0

∂

∂r

∂ūr

∂z
M2

2m

Rer2
M26 M20 + M26 M19 M22 + M26 0 M21

− m

r
0

2m

Rer2
M3 M27 M27 0 M23 + M27 M19 M24

0 M5
∂Āzz

∂r
0 M4 + M28 M28 −2

∂ūz

∂r
M28 0 0

0
∂Ārr

∂z
M7 0 M29 M6 + M29 −2

∂ūr

∂z
M29 0 0

0 M10 M9 0 − ∂ūr

∂z
+ M30 − ∂ūz

∂r
+ M30 M8 M30 0 0

0
∂Āφφ

∂z
M12 M13 M31 M31 0 M11 + M31 0 0

0 M17 0 M15 0 0 0 0 M14 − ∂ūz

∂r

0 0 M17 M18 0 0 0 0 − ∂ūr

∂z
M16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.16)

The elements Mn (n = 1, 31) in matrix Ad are shown below:

M1 = ūz

∂

∂z
+ ūr

∂

∂r
− 1

Re

[
∂2

∂z2
+

∂2

∂r2
+

1

r

∂

∂r
− m2

r2

]
+

∂ūz

∂z
,

M2 = ūr

∂

∂r
+ ūz

∂

∂z
− 1

Re

[
∂2

∂z2
+

∂2

∂r2
+

1

r

∂

∂r
− m2 + 1

r2

]
+

∂ūr

∂r
,

M3 = ūr

∂

∂r
+ ūz

∂

∂z
− 1

Re

[
∂2

∂z2
+

∂2

∂r2
+

1

r

∂

∂r
− m2 + 1

r2

]
+

ūr

r
,

M4 = ūr

∂

∂r
+ ūz

∂

∂z
− 2

∂ūz

∂z
+

f(R̄)

De
, M5 =

∂Āzz

∂z
− 2

(
Āzr

∂

∂r
+ Āzz

∂

∂z

)
− 2

∂

∂z
,

M6 = ūr

∂

∂r
+ ūz

∂

∂z
− 2

∂ūr

∂r
+

f(R̄)

De
, M7 =

∂Ārr

∂r
− 2

(
Ārr

∂

∂r
+ Ārz

∂

∂z

)
− 2

∂

∂r
,

M8 = ūr

∂

∂r
+ ūz

∂

∂z
− ∂ūr

∂r
− ∂ūz

∂z
+

f(R̄)

De
, M9 =

Āzr

∂r
−

(
Āzr

∂

∂r
+ Āzz

∂

∂z

)
− ∂

∂z
,

M10 =
Āzr

∂z
−

(
Ārz

∂

∂z
+ Ārr

∂

∂r

)
− ∂

∂r
, M11 = ūr

∂

∂r
+ ūz

∂

∂z
− 2

ūr

r
+

f(R̄)

De
,

M12 =
∂Āφφ

∂r
− 2

Āφφ

r
− 2

r
, M13 = −

(
2Āφφ

r
+

2

r

)
m,

M14 = ūr

∂

∂r
+ ūz

∂

∂z
− ūr

r
+

f(R̄)

De
− ∂ūz

∂z
, M15 =

Āzr

r
−

(
Āzr

∂

∂r
+ Āzz

∂

∂z

)
− ∂

∂z
,

M16 = ūr

∂

∂r
+ ūz

∂

∂z
− ūr

r
+

f(R̄)

De
− ∂ūr

∂r
, M17 = −

(
Āφφ

r
+

1

r

)
m,
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M18 =
Ārr

r
−

(
Ārr

∂

∂r
+ Ārz

∂

∂z

)
−

(
∂

∂r
− 1

r

)
, M19 = − cf(R̄)

ReDe

∂

∂z
,

M20 = − cf(R̄)

ReDe

(
∂

∂r
+

1

r

)
, M21 = − cmf(R̄)

ReDe r
,

M22 =
cf(R̄)

ReDe r
, M23 =

cmf(R̄)

ReDe r
, M24 = − cf(R̄)

ReDe

(
∂

∂r
+

2

r

)
,

M25 = − c

ReDe
[∇ · Ā]z, M26 = − c

ReDe
[∇ · Ā]r , M27 = − c

ReDe
[∇ · Ā]φ,

M28 =
Āzzf(R̄)

2

DeL2
, M29 =

Ārr f(R̄)
2

DeL2
, M30 =

Āzr f(R̄)
2

DeL2
, M31 =

Āφφf(R̄)
2

DeL2
.

The matrix Bd has the simple form

Bd = diag(0, 1, 1, 1, 1, 1, 1, 1, 1, 1).

4.2. Boundary conditions

The boundary conditions for three-dimensional perturbation equations are as follows:
(a) Along the outer boundary. Everywhere along the entire outer boundary

ũz = ũr = ũφ =
∂P̃

∂n
= 0

are prescribed. Based on physical intuition, it was expected (and verified upon
observing the solution) that the relevant eigenfunctions are non-zero only in the
vicinity of the interface and the cusp and reduce to zero very rapidly away from the
interface. Thus the proposed boundary conditions, which are simple to implement,
are sufficient physically. Also,{

Ã = 0 along upstream boundary,
∂ Ã
∂n

= 0 along the bubble surface and sidewall.

(b) Along the axis of symmetry. The boundedness and smoothness conditions are
required for all physical quantities on the singular axis of geometry. Hence,

lim
r→0

∂u′

∂φ
= 0, lim

r→0

∂P ′

∂φ
= 0

given by Batchelor & Gill (1962) are applied on the centreline. Representing u′, P′ by
(4.6), the boundary condition can be derived as follows (refer to Khorrami, Malik &
Ash 1989 for details):⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂ũz

∂r
= ũr = ũφ =

∂P̃

∂r
= 0 for m =0 ,

ũz = P̃ = ũr + ũφ = 2 ∂ũr

∂r
+ m

∂ũφ

∂r
= 0 for m =1,

ũz = ũr = ũφ = P̃ = 0 for m > 1.

(4.17)

For the m =1 case, the relations are deduced by also enforcing the continuity equation
on the symmetry axis:

lim
r→0

∇ · u′ = 0.
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For polymer stretch tensor perturbations,⎧⎨
⎩

∂ Ã
∂r

= 0 for m = 0,

Ã = 0 for m > 0.

(c) Along the free surface. the boundary conditions for the perturbations are
obtained by subtracting basic state parts from the linearized boundary conditions
for the flow variables. For the pressure (P ) and velocity components (uz, ur, uφ), the
dynamic conditions of the free surface consist of (3.6), (3.7) and

1

r

∂un

∂φ
+

∂uφ

∂n
− uφnr

r
+ cσ

p
nφ = 0, (4.18)

and the continuity equation gives

∂un

∂n
+

∂us

∂s
+

ur

r
+

1

r

∂uφ

∂φ
= 0. (4.19)

The unit normal and tangential vectors on the bubble surface (n, s) are decomposed
into the base-state part (n̄, s̄) and small disturbances (n′, s′). The base-state parts n̄, s̄
are given as

n̄r = s̄z =

∂z̄

∂s̄[(
∂z̄

∂s̄

)2

+

(
∂r̄

∂s̄

)2
] 1

2

,

−n̄z = s̄r =

∂r̄

∂s̄[(
∂z̄

∂s̄

)2

+

(
∂r̄

∂s̄

)2
] 1

2

,

n̄φ = 0.

Caused by the normal disturbance of the surface (H ′
n), the ‘small’ vectors n′, s′ are

derived as

n′
z = −s ′

r = −n̄r

(
1 − n̄2

z

) ∂r ′

∂s̄

∂z̄

∂s̄
− ∂r̄

∂s̄

∂z′

∂s̄(
∂z̄

∂s̄

)2
,

n′
r = s ′

z = n̄zn̄
2
r

∂r ′

∂s̄

∂z̄

∂s̄
− ∂r̄

∂s̄

∂z′

∂s̄(
∂z̄

∂s̄

)2
,

n′
φ = − n̄r

r̄

(
∂r ′

∂φ
+

n̄z

n̄r

∂z′

∂φ

)
,

where

z′ = H ′
nn̄z, r ′ = H ′

nn̄r
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are the projections of the normal displacement perturbation H ′
n in the axial and

radial directions, respectively. The pressure and velocity perturbations along the
bubble surface are functions of surface coordinate s and normal displacement Hn and
are linearized as follows:

P ′(s, Hn) = P ′(s̄, 0) +
∂P̄

∂n̄
H ′

n + H.O.T .,

u′
z(s, Hn) = u′

z(s̄, 0) +
∂ūz

∂n̄
H ′

n + H.O.T .,

u′
r (s, Hn) = u′

r (s̄, 0) +
∂ūr

∂n̄
H ′

n + H.O.T .,

where H.O.T. denotes higher order terms, which are neglected.
Utilizing the above expressions to subtract the base-state part from (3.6), (3.7),

(4.18) and (4.19), the perturbed normal stress balance condition, applied on the basic
state shape, is derived as

P ′ +
∂P̄

∂n̄
H ′

n +
z′

Re
− 2

Re
(n̄ · ∇(u′ · n̄) + n̄ · ∇(ū · n′) + n′ · ∇(ū · n̄))

− c
Re

(n̄ · σp ′ · n̄ + 2n̄ · σ̄ p · n′) +
∇ · n′

Re Ca
= 0. (4.20)

Similarly, the two tangential stress balance conditions are given as

(s̄ · ∇(u′ · n̄) + s̄ · ∇(ū · n′) + s′ · ∇(ū · n̄)) + (n̄ · ∇(ū · s′) + n̄ · ∇(u′ · s̄)

+ n′ · ∇(ū · s̄)) + c(n̄ · σp ′ · s̄ + n′ · σ̄ p · s̄ + n̄ · σ̄ p · s′) = 0 (4.21)

and (
1

r̄

∂

∂φ
(ū · n′ + u′ · n̄) +

∂u′
φ

∂ n̄

)
−

u′
φn̄r

r̄
+ c(σp

zφ

′
n̄z + σ

p
rφ

′
n̄r ) = 0. (4.22)

respectively. The continuity equation along the free boundary is perturbed as

(n̄ · ∇(u′ · n̄) + n̄ · ∇(ū · n′) + n′ · ∇(ū · n̄)) + (s̄ · ∇(ū · s′) + s̄ · ∇(u′ · s̄)

+ s′ · ∇(ū · s̄)) +
1

r̄

∂u′
φ

∂φ
+

u′
r

r̄
− ūr

r̄2
r ′ = 0. (4.23)

The perturbed kinematic condition describes the effect of the small displacement
on the shape of the free surface:

∂H ′
n

∂t
+ ū · ∇H ′

n = u′ · n̄. (4.24)

The boundary condition for polymer stretch tensor perturbations, A′, is similar to its
base-state counterpart:

∂ A′

∂n̄
= 0. (4.25)

By inserting (4.6) for Q′, the free-surface conditions (4.20)–(4.25) can be cast in the
matrix equation form of

Ab X̃b = −ωBb X̃b, (4.26)
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where

X̃b =

⎡
⎢⎢⎢⎣

P̃

ũ

Ã

H̃n

⎤
⎥⎥⎥⎦ (z b, rb) (4.27)

denotes the eigenfunction restricted to the free-boundary points. In the matrix Bb,
only the diagonal element corresponding to normal displacement H̃ n is unity, all other
elements are zero.

Other boundary conditions for perturbations can be cast in the general matrix
form of (4.26) as well. The complete matrix equation for this generalized eigenvalue
problem is formed by combining (4.12) and (4.26):

[
Ad 0

0 Ab

][
X̃d

X̃b

]
= −ω

[
Bd 0

0 Bb

][
X̃d

X̃b

]
. (4.28)

4.3. Computational method

The generalized partial-differential eigenvalue problem (4.28) governs the dispersion
relation of the temporal exponent, ω, and azimuthal wavenumbers, m, of the small
disturbances for a specific combination of capillary number, Ca, Reynolds number,
Re, and Deborah number, De. All terms are discretized over the computational
domain, using central-differencing scheme. The numerical eigenvalue problem is then
solved iteratively by the software package ARPACK (Lehoucq, Sorensen & Yang
1997) for the leading eigenvalue (ω) representing the most unstable mode. ARPACK
is an eigenvalue solver based on the Arnoldi method (Sorensen 1992) which is most
appropriate for large-scale matrix computations. In solving the eigenvalue problem,
much care is needed to discern the physical eigenvalues from the large population of
the numerical eigenvalues. A criterion to identify the physical eigenvalue is to check
whether the corresponding eigenfunctions are physically reasonable. The spurious
numerical eigenvalues are accompanied by non-physical eigenfunctions. Furthermore
and more quantitatively, the physical dimensions of the meshed domain were changed
for the same case to ensure the obtained physical eigenvalues are mesh-independent
and unaffected by the above change.

4.4. Energy budget equation

In order to understand the mechanism responsible for cusp instability, the equation
governing the kinetic energy of small disturbances is investigated term by term. This
energy equation is derived from the momentum equation (4.8) as

D

Dt

∫
v

u′
iu

′
i

2
dV

︸ ︷︷ ︸
K.E.

=

∫
v

−u′
iu

′
j

∂Ūi

∂xj

dV

︸ ︷︷ ︸
Es

−
∫

v

∂(P ′u′
i)

∂xi

dV

︸ ︷︷ ︸
Ep

+
1

Re

∫
v

∂2

∂x2
j

(
u′

iu
′
i

2

)
dV

︸ ︷︷ ︸
Ev

− 1

Re

∫
v

(
∂u′

i

∂xj

)2

dV

︸ ︷︷ ︸
Ed

+
c

Re

∫
v

u′
i

∂σ
p
ij

′

∂xj

dV

︸ ︷︷ ︸
Ef

. (4.29)

The identifiers associated with the underbraces in (4.29) are described below:
K.E.: total kinetic energy of small disturbances corresponding to an eigenmode over
a control volume;
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Figure 2. Normalized terminal velocity (U ∗
T /U ∗) versus capillary number (CaT ) for different

mesh resolutions: a gas bubble rising in an FENE-CR fluid with L =3.

Es: production or destruction of energy through the interaction of base-state velocity
gradient and Reynolds stresses;
Ep: energy change through the pressure gradient;
Ev: energy change due to viscous effects;
Ed: energy change due to viscous dissipation;
Ef : energy change through the polymer stress gradient.
Among the above terms, the following results (in § 6.3) indicate Ep is the largest
contribution to K.E. increase. By applying the divergence theorem to Ep over the
whole domain and in view of the vanishing of velocity disturbances on the outer
boundary, Ep can be expressed as the net energy flux across the bubble surface
caused by the pressure disturbance:

−
∫

v

∂(P ′u′
i)

∂xi

dV = −
∮
S

P ′u′ · ds. (4.30)

Then applying the normal stress balance condition (4.20) to replace P ′, the energy
change over the entire volume due to Ep becomes

−
∫

v

∂(P ′u′
i)

∂xi

dV =

∮
S

{
∂P̄

∂n̄
H ′

n +
z′

Re
− 2

Re
[n̄ ·�(u′ · n̄)+ n̄ ·∇(ū · n′)+n′ ·∇(ū · n̄)]

− c

Re
(n̄ · σp ′ · n̄ + 2n̄ · σ̄ p · n′) +

� · n′

Re Ca

}
u′ · (−n̄) dS. (4.31)

In § 6.3, we will use (4.31) in energy analysis of bubble cusp instability.

5. Base flow results
The cylindrical tube is modelled as a computational domain that extends 10D in the

axial direction and 5D in radial direction. The initially spherical bubble of diameter
D is at the origin. A boundary-fitted mesh is generated at each time step to match
the deforming bubble surface. A complete description of adaptive mesh generation
for this work is included in the paper by You et al. (2008). A mesh-dependence study
is performed for three levels of refinement as shown in figure 2. The steady-state
results based on the three mesh refinements indicate that the terminal rise speed of
the bubble for a range of capillary numbers converges on the mesh refinement with
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Figure 3. Overall and close-up views of the boundary-fitted mesh around an axisymmetric
cusped bubble rising in an FENE-CR fluid with L = 3, DeT = 0.452, ReT = 0.435, CaT =
1.469, c =0.3: (a) 49 × 25 points; (b) 49 × 25 points; (c) 49 × 25 points; (d ) 73 × 31 points;
(e) 49 × 21 points.

49 (meridional) × 25 (radial) points. The overall and close-up meshes around the
Z–r cross-section of an axisymmetric cusped bubble rising in an FENE-CR fluid are
shown in figure 3. As figure 3(b) shows, the meridional distribution of points on the
bubble surface cluster around the two poles in order to effectively resolve the large
curvature changes there. Figure 3(c–e) shows a comparison of three different mesh
resolutions around the tip for the same physical conditions. The smallest cell size (in
the radial direction) adjacent to the bubble surface is uniformly specified as 0.002D

for all three meshes presented. An effectively identical curvature around the tip is
achieved for all three levels of mesh refinement. As per the axisymmetric curvature
formula (3.8), the corresponding three-dimensional curvatures of the first off-axis cell
surface adjacent to the tip point are 187, 187 and 186 based on 49 × 25, 73 × 31 and
49 × 21 mesh configurations, respectively (figure 3c–e).

Results are computed for the physical conditions specified as ReT =
0.435, CaT = 1.469, DeT = 0.452, c = 0.3. In the FENE-CR model equations, the
maximal extension of polymer chains is specified as L =3.0. This set of parameters
was one that supports a knife-edge cusp. An extensive search of the parameter space
was conducted before this set, and several others like it were identified. This is
consistent with the rarity of the knife-edge cusp in experiments. Figure 4(a) records
the bubble-rising velocity with respect to time. It shows a steep increase in velocity
during the initial time and quick convergence to the terminal velocity. The transient
shapes are shown in figure 4(b). The bubble deforms from a sphere to a prolate shape
with a round tip and finally develops a sharp axisymmetric trailing edge in about 4.5
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Figure 4. Transient states of a gas bubble rising in an FENE-CR fluid with L = 3,ReT =
0.435,CaT = 1.469,DeT = 0.452, c = 0.3: (a) time history of bubble-rising velocity (dimension-
less); (b) time history of deforming shapes.
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Figure 5. Converged base-state solution of a gas bubble in an FENE-CR fluid with
L =3, ReT =0.435,CaT = 1.469,DeT = 0.452, c =0.3, T = 4.52: (a) streamlines around a gas
bubble; (b) distribution of A along the bubble surface; θ increases from top to bottom.

time units. Here, a time unit denotes the time required for the bubble to move one
diameter at the terminal speed of U ∗

T . At T = 4.52, a steady-state shape is reached, as
streamlines strictly conform to the bubble surface (figure 5a). The strongest stretching
is around the cusped tip as indicated by tr(A) (figure 5b). The distribution of the
components of the polymer stretch tensor A on the bubble surface is also plotted
in the figure. A peak value for Arr at the tip indicates a strong radial stretching
experienced by the cusped tip.

6. Stability analysis results
In the preceding section, a base-state solution is presented. An axisymmetric

cusp is developed at the trailing edge. But the question remains as to whether
this axisymmetric cusp is actually observable in the presence of disturbances. To
answer this question, the linear stability analysis is carried out by introducing three-
dimensional small disturbances Q′ in the form of (4.6) to perturb the base-state
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Mesh A (49 × 21) Mesh B (49 × 25) Mesh C (73 × 31)
N =11008 N =13008 N =23712

+0.143036* +0.143843* +0.144751*
−0.157106 −1.627342 −0.156029

−0.178140 ± 0.0529013i −0.172514 ± 0.0552610i −0.172019 ± 0.0560471i
−0.188236 ± 0.0816902i −0.185163 ± 0.0837109i −0.185150

Table 1. The five leading eigenvalues (ω) for different meshes at m= 2: a gas bubble rising in
an FENE-CR fluid with L =3, Dt/D = 10, ReT = 0.435, CaT =1.469, DeT = 0.452, c = 0.3.

solution Q̄. For a specified azimuthal wavenumber m, the generalized eigenvalue
problem (4.28) is solved for the leading eigenvalue (ω) which indicates the growth
rate of the most unstable eigenmode. For the critical eigenmode, an arbitrary but
small amplitude of the corresponding eigenfunction is combined with the base-state
solution to reconstruct an unstable three-dimensional flow field around the cusped
bubble. An investigation of the energy budget of the disturbances is performed to
determine the production and dissipation terms affecting the growth of this flow
instability.

6.1. Validation study

It is important to pinpoint the leading physical eigenvalue among a number of
numerical eigenvalues in the eigenvalue problem. A criterion to identify the physical
one from a large population of numerical eigenvalues is to check whether the
corresponding eigenvectors are physically understandable. The spurious eigenvalues
are accompanied by non-physical, randomly oscillating eigenvectors. To ensure the
accuracy of the numerical results, we employed three meshes of different resolutions
to study the flow for ReT = 0.435, CaT = 1.469, DeT = 0.452, c =0.3. With each of
these three meshes and corresponding base flow fields, the generalized eigenvalue
problem (4.28) was formulated with a matrix of size N × N. The eigenvalues that had
the smallest real values at the azimuthal wavenumber m =2 were taken as the first
five eigenvalues. The comparison of computed eigenvalues for three different meshes
are made in table 1. The only positive ω (with the superscript*) is identified as the
leading eigenvalue with very small variations among these three meshes. This positive
real eigenvalue represents the growth rate of the unstable eigenmode at m =2. In
the following sections, the intermediate mesh with 49 × 25 points is used to present
results.

6.2. The least stable eigenmode

The superposition of a base-state shape and a three-dimensional shape disturbance
will give rise to a deformed shape as a function of azimuthal wavenumber. A sketch
is drawn in figure 6 to illustrate schematic bubble shapes with surface perturbations
with various wavenumbers. The perturbation with m =2 is the only one that can turn
an axisymmetric bubble into a ‘knifelike’ shape.

The least stable eigenvalues, ω, corresponding to different azimuthal wavenumbers,
m, are listed in table 2. A study of this table shows that, except for m =0, which
represents the axisymmetric perturbation, all eigenvalues corresponding to m > 0
have no imaginary part (Im(ω) = 0). This means that the development of three-
dimensionality is not a Hopf-type bifurcation but an exchange of stabilities. The
only positive ω, which represents the growth rate of an unstable mode, occurs for
m = 2. The small disturbances for all other modes decay. As explained in the sketch



146 R. You, A. Borhan and H. Haj-Hariri

m Leading eigenvalue (ω)
0 −1.35848 × 10−1 ± 0.0110893i
1 −1.82535 × 10−2

2 +1.43843 × 10−1

3 −3.66268 × 10−2

4 −1.64677 × 10−1

5 −2.27981 × 10−1

6 −2.30643 × 10−1

7 −2.33831 × 10−1

8 −2.37438 × 10−1

Table 2. Leading eigenvalues (ω) versus azimuthal wavenumber (m): a gas bubble rising in
an FENE-CR fluid with L = 3, Dt/D = 10, ReT = 0.435, CaT = 1.469, DeT = 0.452, c = 0.3.

(a) (b)

k = 1

k = 3 k = 4

k = 2

Figure 6. (a) A sketch of a cusped bubble. (b) Top views of the cross-sections at different
azimuthal wave numbers (m): the solid line denotes an unperturbed cross-section; the dashed
line denotes a perturbed cross-section at the corresponding m.

(figure 6), the eigenmode with m =2 has the effect of flattening an axisymmetric
bubble. The value ω = 0.143843 means that it requires 6.95 unit computational time,
which is equivalent to 0.392 unit time (as defined above, 1 unit time denotes the time
required for the bubble to move the distance of 1D at the speed U ∗

T ), for an e-folding
of the initial disturbances. Compared with 4.52 unit time for a complete base-state
bubble deformation, 0.392 unit time represents a very short time period to form a
three-dimensional cusp. As the azimuthal wavenumber, m, increases above 2, small
disturbances of the corresponding eigenmode are damped at an increasing rate of
Re(ω). Figure 7 shows that the normal displacement eigenfunction, H̃ n, on the bubble
surface for m =2 mode; H̃ n is nearly zero in the front part and grows rapidly near
the rear part. It then ends up at zero at the tip due to the restriction of the boundary
condition (4.17). This causes a steep gradient of H̃ n close to the rear tip. The H̃ n

eigenfunction implies a nearly unperturbed front surface and largely disturbed rear
surface. The imposed boundary condition of zero perturbation on the singular axis
for m > 1 is an artefact of the perturbation approach, compared with a fully three-
dimensional simulation. The latter would not have been restricted by the boundary
condition; however, the cost and complexity would have been drastically higher.
Furthermore, the results would have been less insightful. In figure 8, the velocity
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Figure 7. Distribution of normal displacement eigenvector (H̃ n) along the bubble surface for
the unstable eigenmode with m= 2; θ increases from top to tail; a gas bubble rising in an
FENE-CR fluid with L = 3, Dt/D = 10, ReT = 0.435, CaT =1.469, DeT = 0.452, c = 0.3.
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Figure 8. Velocity perturbation field (u′) in two azimuthally perpendicular planes for the
unstable eigenmode with m= 2: a gas bubble rising in a FENE-CR fluid with L = 3,
Dt/D = 10, ReT = 0.435, CaT = 1.469, DeT = 0.452, c = 0.3. (a) u′ in one plane; (b) u′ in
the perpendicular plane.

perturbation vectors (u′) in two azimuthally perpendicular planes also exhibit their
most prominent gradients very close to the rear tip for m =2. In one plane, the
velocity perturbations intend to push the rear surface inward, while in an orthogonal
plane, they try to stretch the surface out.

The three-dimensional perturbed bubble shape for the unstable mode with m =2
is generated by superposition of the base-state shape, and the bubble surface normal
displacement disturbance H ′ as expressed by

H ′(z, r, φ) = εH̃ n(z, r) cos(mφ)eωt.

In the above formulation, ε and t are two arbitrary parameters; ε represents an
arbitrary amount of the small disturbance eigenfunction; and t denotes an arbitrary
value for time. In this particular case, ε = 0.2, t = 0.1 are specified to generate the
three-dimensional shape as shown in figure 9. It clearly shows a knifelike cusped tail
with a sharp trailing edge in one view and a broad edge in the perpendicular view.
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Figure 9. Comparison of (a) the axisymmetric cusp shape of base-state solution and
(b) the knifelike cusp shape for the unstable mode with m= 2; (c) and (d) represent mutually
perpendicular views of the knifelike cusp shape: a gas bubble rising in a FENE-CR fluid
with L = 3, Dt/D = 10, ReT = 0.435, CaT =1.469, DeT =0.452, c = 0.3. (a) Base-state shape;
(b) perturbed shape; (c) cusp view; (d ) broad edge view.

(a) (b)

Figure 10. Kinetic energy increase rate for the eigenmode with m= 2; the maximum value
is marked by the point; each contour line away from the point represents a decreasing
level of kinetic energy rate: a gas bubble rising in an FENE-CR fluid with L= 3, Dt/D = 10,
ReT = 0.435, CaT =1.469, DeT = 0.452, c = 0.3. (a) z–r plane view; (b) on the bubble surface.

6.3. Energy budget analysis

To understand the mechanism leading to the knifelike cusp instability, the energy
budget equation (4.29) for the unstable eigenmode with m =2 is investigated. Figure 10
presents the time rate of change of the disturbance kinetic energy (K.E.) in the flow
field. It shows that the most energized region is located on the rear bubble surface at
which the maximal surface disturbance occurs. The integration of each energy term in
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Ep 7.46
Ev 1.69
Es −0.06
Ef −1.71
Ed −6.38

D
Dt

K.E. 1.00

Table 3. Energy budget for the eigenmode with m= 2 (4.29): a gas bubble rising in an
FENE-CR fluid with L =3, Dt/D = 10, ReT = 0.435, CaT = 1.469, DeT = 0.452, c = 0.3.

1 2.035
2 −0.185
3 −0.229
4 −0.078
5 0.066
6 0.138
7 −0.002
8 −0.745

Ep 1.00

Table 4. Ep decomposition for the eigenmode with m= 2 (6.1): a gas bubble rising in an

FENE-CR fluid with L = 3, Dt

D
= 10, ReT = 0.435, CaT = 1.469, DeT = 0.452, c = 0.3.

(4.29) over the entire domain represents its contribution to the total K.E. change. Nor-
malized by the sum of all terms, the calculations in table 3 indicate that Ed provides a
major dissipation of the total K.E.; Ef represents a small dissipation resulting from
the coupling of two small perturbation terms; Es is a small disturbance energy destruc-
tion term that damps the disturbances slightly; Ev contributes to energy production
of small disturbances; Ep is the major energy production term of K.E. The role of
Ev can be demonstrated via a qualitative analysis of the velocity perturbation field
in figure 8: the velocity magnitude decreases in the normal direction away from the
bubble surface. Since the energy contribution by Ev over the whole domain is given by

Ev =
1

Re

∫
v

∂2

∂x2
j

(
u′

iu
′
i

2

)
dV =

∮
S

∇
(

u′ · u′

2

)
· (−n̄) dS,

(n̄ points outward the surface) Ev turns out to be positive in this surface integral.
For the term Ep , (4.31) provides a mechanism for energy transport from the base
flow to the perturbations through the bubble surface. In order to understand the
mechanism, term by term calculation of (4.31) was performed. For convenience, this
equation is rearranged as

Ep = −
∫

v

∂(P ′u′
i)

∂xi

dV =

∮
S

{
−

(
∂P̄

∂n̄
H ′

n

)
(u′ · n̄)

︸ ︷︷ ︸
(1)

+
z′

Re
u′ · (−n̄)︸ ︷︷ ︸

(2)

+
2

Re
n̄ · ∇(u′ · n̄)u′ · (n̄)︸ ︷︷ ︸

(3)

+
2

Re
n̄ · ∇(ū · n′)u′ · (n̄)︸ ︷︷ ︸

(4)

+
2

Re
n′ · ∇(ū · n̄)u′ · (n̄)︸ ︷︷ ︸

(5)

+
c

Re
n̄ · σp ′ · n̄u′ · (n̄)︸ ︷︷ ︸

(6)

+
c

Re
2n̄ · σ̄ p · n′u′ · (n̄)︸ ︷︷ ︸

(7)

+
∇ · n′

Re Ca
u′ · (−n̄)︸ ︷︷ ︸
(8)

}
dS, (6.1)
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Figure 11. The effect of capillary number and bubble size on disturbance growth rate at
Dt/D = 10, ReT = 0.435, DeT = 0.452, c = 0.3, m= 2: the FENE-CR model with L = 3.
(a) Growth rate (ω) versus capillary number (CaT ) and bubble size (Ds); (b) critical capillary
number versus bubble size.

then the surface integral of each term (1–8) over the whole bubble surface is calculated
and normalized by the sum of all terms in Ep . The results are listed in table 4. It
shows that term (1), which represents the triple interaction among the base-state
pressure gradient (∂P̄ /∂n̄), the normal displacement perturbation (H ′

n) and the normal
velocity perturbation (u′

n) on the freesurface, is the dominant contributor to Ep and
subsequently to K.E. of small disturbances. The first set of parentheses is basically the
change of base pressure as a result of the motion of the surface under the perturbation;
the second set of parentheses is the perturbed normal velocity. The combination
denotes the p–V work done by the base pressure on the perturbed volume. Therefore,
it is concluded that this term causes knifelike cusp instability to appear. To further
verify the conclusion, a simple test was carried out by turning off ∂P̄ /∂n̄ in the
boundary conditions for perturbed equations. The resulting leading eigenvalue, ω,
became a positive value, which meant a stable eigenmode with m = 2 would exist
if ∂P̄ /∂n̄ = 0.

6.4. Effects of bubble size and surface tension

A parametric study was conducted to investigate the effect of bubble size and surface
tension on bubble cusp formation in a viscoelastic fluid of a fixed Deborah number. In
order to make the comparison, the flow conditions are kept the same for all cases, i.e.
the FENE-CR model fluid with L =3, ReT = 0.435, DeT = 0.452, c = 0.3. The bubble
size, Ds , varies from 0.5D to D while the tube diameter is always fixed as Dt = 10D.
The effect of surface tension is represented by the capillary number based on U ∗

T and
μ for the case with Ds = D. At m = 2, the growth rate, ω, as a function of CaT and
Ds is plotted in figure 11(a). It can be seen that ω increases as CaT increases for
a given bubble size (Ds) and a fixed Deborah number (DeT ). There exists a critical
value of CaT at the intersection point of each curve with ω = 0, and the knifelike cusp
instability will occur when CaT is increased above it. This critical CaT increases as
the bubble size decreases as shown in figure 11(b). For the Ds = 0.5D case, the critical
CaT is not reached even at a very large value (CaT = 7.4). Therefore, it is foreseen
that, for a sufficiently small bubble, the cusp instability will not happen at any finite
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capillary number. This tendency is consistent with the experimental observation of
Liu et al. (1995).

7. Conclusions
Linear stability analysis is performed to predict the trailing-edge three-dimensional

cusp formation for a gas bubble rising in a viscoelastic fluid. The results identify a
uniquely unstable eigenmode with the azimuthal wavenumber m =2 which leads to a
‘knifelike’ cusp. The fact that the eigenvalue corresponding to this unstable mode does
not have an imaginary part indicates that the development of the three-dimensional
cusp is not a Hopf-type bifurcation but an exchange of stabilities. This cusped
bubble behaviour could be analogous to the collapse of an overpressurized cylindrical
rubber tube in a lateral direction corresponding to the m =2 mode, although a
strict justification based on quantitative analysis of the latter is still needed. The
mechanism of cusp instability is explored by examining the energy budget equation
for perturbation terms. The analysis indicates that small disturbances are energized
by base-flow energy transport via the triple interaction among the base-state pressure
gradient (∂P̄ /∂n̄), the normal displacement perturbation (H ′

n) and the normal velocity
perturbation (u′

n) on the free surface. This combination can be interpreted as the p–V
work done by the base pressure on the perturbed volume. The role of viscoelasticity
is implicit. Viscoelastic effects play an important role in setting up the base-state
pressure gradient which can then drive the three-dimensional instability of the cusp.
The results also demonstrate that, for a fixed Deborah number, there exist a critical
bubble size and a capillary number beyond which the asymmetric cusp is likely to
form. These predictions are consistent with experimental observations.

This work was supported by NASA Grant NAG3-2760 with
Dr R. Balasubramaniam as the technical monitor. The authors acknowledge
the constructive comments from two anonymous reviewers and Professor McKinley.

Appendix. Governing equations in cylindrical coordinates
The dimensionless flow equations in cylindrical coordinates (z, r, φ) are
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The perturbed flow equations in cylindrical coordinates are
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∂ūr

∂z
+ūr
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The dimensionless FENE-CR constitutive equations in cylindrical coordinates are
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The perturbed FENE-CR constitutive equations in cylindrical coordinates are
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De
+

∂A′
rφ

∂t
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